Recommendations for Visualization Recommendations: Exploring Preferences and Priorities in Public Health

Description: 

The promise of visualization recommendation systems is that analysts will be automatically provided with relevant and high-quality visualizations that will reduce the work of manual exploration or chart creation. However, little research to date has focused on what analysts value in the design of visualization recommendations. We interviewed 18 analysts in the public health sector and explored how they made sense of a popular in-domain dataset in service of generating visualizations to recommend to others. We also explored how they interacted with a corpus of both automatically- and manually-generated visualization recommendations, with the goal of uncovering how the design values of these analysts are reflected in current visualization recommendation systems. We find that analysts champion simple charts with clear takeaways that are nonetheless connected with existing semantic information or domain hypotheses. We conclude by recommending that visualization recommendation designers explore ways of integrating context and expectation into their systems.

Authors: 
Calvin Bao
Siyao Li
Sarah Flores
Michael Correll
Leilani Battle
Publication Date: 
Saturday, April 30, 2022
Publication Information: 
CHI 2022, April 30–May 6, 2022, New Orleans