Optimal Sub-sampling with Influence Functions


Sub-sampling is a common and often effective method to deal with the computational challenges of large datasets. However, for most statistical models, there is no well-motivated approach for drawing a non-uniform subsample. We show that the concept of an asymptotically linear estimator and the associated influence function leads to optimal sampling procedures for a wide class of popular models. Furthermore, for linear regression models which have well-studied procedures for non-uniform sub-sampling, we show our optimal influence function based method outperforms previous approaches. We empirically show the improved performance of our method on real datasets.

Daniel Ting
Eric Brochu
Publication Date: 
Monday, December 3, 2018
Publication Information: 
NeurIPS 2018